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Società Italiana di Fisica
Springer-Verlag 2001

Chaotic solitons in Sine-Gordon system

Wenhua Hai1,2,a, Zelan Zhang3, and Jianshu Fang2

1 CCAST (World Laboratory), PO Box 8730, Beijing 100080, PR China
2 Department of Physics, Hunan Normal University, Changsha 410081, PR China
3 Department of Analysis and Measurement, Wuhan University, Wuhan 430072, PR China

Received 25 December 2000

Abstract. We extend the constant-variation method to the case of partial differential equations. Applying
the method to periodically perturbed Sine-Gordon system, we find some novel solitons, which are embedded
in a chaotic attractor and possess controllable velocity of motion. Taking periodically driven long Josephson
junction as an example the corresponding chaotic region in parameter space and chaotic orbit are obtained
analytically and numerically.

PACS. 05.45.Ac Low-dimensional chaos – 02.60.Cb Numerical simulation; solution of equations –
74.50.+r Proximity effects, weak links, tunneling phenomena, and Josephson effects

Soliton and chaos are two kinds of important and inter-
esting phenomena in nonlinear dynamics and the corre-
sponding quantum mechanics [1–4]. Solitons describe reg-
ular motions of some completely integrable systems and
chaos means stochastic motion in the presence of non-
integrability for the deterministic systems. The regular-
ity and randomness can be used to same field for dif-
ferent purposes, as in the soliton communication [5] and
chaos one [6,7]. However, the integrability of soliton sys-
tems could easily be broken by the periodic perturbations,
which generally exist in really physical situations. It had
been shown numerically and semianalytically that the soli-
tons interacting with an external oscillating field could
become stochastically unstable one [4,8–10]. The stable
solitons embedded in a chaotic attractor would be dou-
bly useful for the practical problems, which require both
regularity and randomness. In this paper, we only investi-
gate the soliton and chaos in a Sine-Gordon system with
periodical perturbations.

The Sine-Gordon (SG) solitons are the model of
many physically interesting problems such as the
magnetic-flux propagation on a rf-driven long Josephson-
junction [11,12], the charge-density waves in a one-
dimensional condensate interacting with an ac electric
field [13] and the B-DNA molecular groups experiencing
microwaves [14–16]. Recently, we suggest a direct per-
turbation technique for handling the perturbed SG soli-
tons [17,18] and the homoclinic chaos [19,20] in the geo-
metrically one-dimensional case. All of the results [17–20]
show that stabilities of the systems depend on the initial
and boundary conditions. We will give a similar conclusion
and some new results for the single solitons perturbed by
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a periodical field here. That is, we will extend the above
method to (1+1) dimensional case and use it to obtain the
chaotic solitons whose boundedness sensitively depends on
the initial conditions and system parameters. Particularly,
the boundedness conditions make the soliton velocity con-
trollable, which is a useful property.

Equation describing interaction between the SG soli-
tons and perturbed external field is [8,9]

ϕtt − ϕxx + sinϕ = εR(x, t, ϕ) for |ε| � 1 (1)

in suitably normalized units, where R(x, t, ϕ) is a periodic
function of time t and all of quantities are dimensionless.
Making the perturbation expansion

ϕ = ϕ(0) +
∞∑
i=1

εiϕ(i), (2)

and inserting it into equation (1) yield the unperturbed
equation

ϕ
(0)
tt − ϕ(0)

xx + sinϕ(0) = 0 (3)

and any ith-order perturbed equations

ϕ
(i)
tt − ϕ(i)

xx + (cosϕ(0))ϕ(i) = R(i)(x, t, ϕ(j))
for j < i, i = 1, 2, ... (4)

Here number i denotes the order of approximation and
R(i)(x, t, ϕ(j)) is the ith-order perturbed function from ex-
pansion of the function R(x, t, ϕ) . For the similar equa-
tions with spatially independent ϕ, we have derived its
chaotic solution from the well-known constant-variation
and demonstrated sensitivity of the solution to the initial
conditions [19,20].
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Now we extend this result from one-dimension to the
considered (1+1) dimension. We take the periodically
driven long Josephson junction as an instance, in which
the perturbed functions read

R(x, t, ϕ) = η − αϕt + ρ sin(kx− ωt), (5)

R(1)(x, t, ϕ(0)) = η − αϕ(0)
t + ρ sin(kx− ωt), (6)

R(i)(x, t, ϕ(j)) = −αϕ(i−1)
t + h(i)(ϕ(j)),

i = 2, 3, ..., j < i. (7)

Here α denotes the dissipative factor, η is the normal-
ized bias current density, the term proportional to ρ rep-
resents an electromagnetic field with the normalized am-
plitude ρ , wave vector k and frequency ω, and h(i)(ϕ(j))
is the function of ϕ(j) which comes from the expansion
of sin

(∑
i=1 ε

iϕ(i)
)
. Note that space and time have been

normalized to the characteristic Josephson length and the
inverse plasma frequency here.

It is well known that equation (3) possesses the exact
solutions containing both localized multisoliton and peri-
odic processes in the (1+1) dimension case [2,21]. Insert-
ing any one of them into equation (4) yields the first order
equation as a non-homogeneous one with the variable co-
efficient cosϕ(0). On the other hand there exists the exact
solution of soliton equation (1) when the periodic contri-
bution in equation (5) is not small and η = α = 0 [21]. If
we take this type as zero-order solution, then the pertur-
bation would concern only the bias and dumping terms.

The substitution of equations (6, 7) into equation (4)
makes the latter the non-homogeneous equations (NHE)
with the non-homogeneous term R(i)(x, t, ϕ(j)) for j <
i. At R(i) = 0, the corresponding homogeneous equa-
tions (HE) of equations (4) are in same form for any i.
Assuming the HE has the two linearly independent solu-
tions ϕ1 and ϕ2. Then the linearity of the HE leads to the
new solution Ciϕ1+Diϕ2 with Ci, Di being arbitrary con-
stants. The idea of constant-variation implies that using
functions f (i)(x, t) and g(i)(x, t) instead of the constants
Ci and Di can construct solution of the NHE (4). Setting

ϕ(i) = f (i)(x, t)ϕ1 + g(i)(x, t)ϕ2 for i = 1, 2, ... (8)

and inserting it into equation (4), we give the coupled
equations of the functions f (i) and g(i) as

ϕ1f
(i)
t + ϕ2g

(i)
t = 0, ϕ1f

(i)
x + ϕ2g

(i)
x = 0,

ϕ1,tf
(i)
t + ϕ2,tg

(i)
t + ϕ1,xf

(i)
x + ϕ2,xg

(i)
x = R(i)(x, t, ϕ(j)).

(9)

Combining equations (8) and (9) with the latter equa-
tions (13) produces the separate equations

f
(i)
t − Df (i)

x = −D−1
√

1−D2ϕ2(x, t)R(i)(x, t, ϕ(j)),

g
(i)
t − Dg(i)

x = D−1
√

1−D2ϕ1(x, t)R(i)(x, t, ϕ(j)). (10)

Solutions of equations (10) are mathematically well-known

f (i) = −D−1
√

1−D2

∫ t

t0

ϕ2[x′(x, t, τ), τ ]

×R(i){x′(x, t, τ), τ, ϕ(j) [x′(x, t, τ), τ ]}dτ,

g(i) = D−1
√

1−D2

∫ t

t0

ϕ1[x′(x, t, τ), τ ]

×R(i){x′(x, t, τ), τ, ϕ(j) [x′(x, t, τ), τ ]}dτ, (11)

for i > j, where by x′ = x−D(τ − t) we mean the char-
acteristic line of equations (10). Note that x, t and D
are dimensionless quantities. Clearly, the solution (2) with
equations (8) and (11) satisfies the usual initial condition
ϕ(t0) = ϕ(0)(t0) or ϕ(i)(t0) = 0 of the perturbed soliton
system.

When i = 1, j = 0, equations (11) depend on the zero-
order solution of equation (3). Let us adopt the simplest
single solitons of equation (3) to evidence the above result.
The single soliton solutions of equation (3) are

ϕ(0) = 4 tan−1 exp ξ, ξ = ± 1√
1−D2

(x−Dt− ξ0),

(12a)

ξ0 = x0 −Dt0±
√

1−D2 ln tan
[
ϕ(0)(t0, x0)/4

]
,

(12b)

where D is dimensionless velocity of the solitons,
ϕ(0)(t0, x0) is the value of ϕ(0) at the initial time t0 and
boundary coordinate x0, the positive and negative signs
are associated with kink and antikink solitons respectively.
These solutions are only valid for an infinite system. In
reality, any system is of finite length and is governed by
suitable boundary conditions. For a long junction, we can
use equations (12) as an good approximation of the real
solution. Substituting equations (12) into equation (4) and
setting R(i) = 0 we easily construct two linearly indepen-
dent solutions

ϕ1 = sechξ, ϕ2 =
1
2

(sinh ξ + ξsechξ) (13)

of the HE. Applying (x′, τ) to replace (x, t) in equa-
tions (6) and (13), and inserting them into equations (11)
yield the first-order solutions of equations (10) in the form

f (1) = − (1−D2)
4D2

∫ ζ2

ζ1

(sinh ξ′ + ξ′sechξ′)

×
[
η ± 2αD√

1−D2
sechξ′ + ρ sin(ζ + aξ′)

]
dξ′,

(14a)

g(1) =
(1−D2)

2D2

∫ ζ2

ζ1

sechξ′

×
[
η± 2αD√

1−D2
sechξ′+ρ sin(ζ + aξ′)

]
dξ′, (14b)



Wenhua Hai et al.: Chaotic solitons in Sine-Gordon system 105

where the following representations have been used,

a =
1
2

(
k +

ω

D

)√
1−D2,

ζ =
1
2

(
k − ω

D

)
(x+Dt) +

1
2

(
k +

ω

D

)
ξ0; (15)

ξ′ = (x+Dt− ξ0 − 2Dτ)/
√

1−D2,

ζ1 = ξ′|τ=t0 =
(x+Dt− ξ0 − 2Dt0)√

1−D2
,

ζ2 = ξ′|τ=t =
(x−Dt− ξ0)√

1−D2
· (16)

When k = 0, the result describes the corresponding prob-
lem of the oscillating field [8,9].

Examining the first-order solution (8) for i = 1 with
equations (13) and (14) we find two interesting proper-
ties: (a) The solution contains some insolvable integra-
tions, which evidences the non-integrability of the chaotic
system. (b) The solution is bounded if and only if the
conditions

lim
t→∞

g(i)(x, t) = 0 for i = 1, 2, ... (17)

are satisfied. Necessity of the conditions (17) is obvious,
because of the unboundedness of ϕ2 as t tends to infin-
ity. Also equation (17) makes possible to use l’Hospital
rule deriving the finite superior limits of |ϕ| and |ϕt|,
that is proof of the sufficiency [19]. The boundedness of
the perturbed solution was usually associated with the
Lyapunov stability [22]. Therefore equations (17) are re-
ally the conditions for possible stability of single soli-
tons (5) under the deterministic perturbation. Applying
equations (14b, 15, 16) to equations (17) results in ex-
plicit form of the condition for i = 1 as

lim t→∞
{
πη ± 4αD√

1−D2

+πρsech
[π

4
(k +

ω

D
)
√

1−D2
]

× sin
[1

2
(k +

ω

D
)ξ0 +

1
2

(k − ω

D
)(x+Dt)

]}
= 0. (18)

This condition cannot be satisfied for general case, since
it contains the variables x and t. Therefore the perturbed
solutions (8) are generally unbounded, as in the oscillating
field case [8,9] with k = 0. In order to make existence of
the bounded solitons, the soliton velocity D must obey
the dispersion relation

D = ω/k. (19)

Under this relation using equation (12b) to the condi-
tion (18) yields

πη ± 4αω√
k2 − ω2

+ πρsech
[π

2

√
k2 − ω2

]
sin(kξ0) = 0,

ξ0 =x0−Dt0±
√

1−D2 ln tan[ϕ(0)(t0, x0)/4]. (20)

Thus we have demonstrated that only for the parameters
determined by equations (19) and (20) the solution (8) are
bounded.

Let us look at an example of the chaotic soliton. Ap-
plying equations (19) and (12) with positive sign to equa-
tion (6) produces the first-order perturbed function

R(1)=η+
2αω√
k2 − ω2

sechξ+ρ sin(
√
k2 − ω2ξ + kξ0). (21)

Inserting equations (21) and (13) into equation (11) can
give the (1+1) dimensional chaotic soliton. For simplicity
here we only seek travelling wave solution f = f(ξ), g =
g(ξ) of equations (10) such that the equations become

f
(1)
ξ =

k2 − ω2

2ω2
ϕ2(ξ)R(1)(ξ),

g
(1)
ξ = −k

2 − ω2

2ω2
ϕ1(ξ)R(1)(ξ) (22)

for i = 1. Integrating the two equations and inserting them
into equations (8) yields the first-order chaotic soliton so-
lution

ϕ(1) =
k2 − ω2

2ω2

×
[
ϕ1(ξ)

∫ ξ

A

ϕ2(ξ)R(1)(ξ)dξ − ϕ2(ξ)
∫ ξ

B

ϕ1(ξ)R(1)(ξ)dξ

]
,

(23)

where A and B are integration constants. Setting the pa-
rameter set k =

√
2, ω = 1, η = ρ = 0.1 and kξ0 = π/2,

equation (20) gets the damping α = 0.025π[1+sech(π/2)].
Given the parameters and selected the constants A = B =
0, we substitute equations (13) and (21) into equation (23)
to plot ξ space-time evolution as Figure 1a, by using
the “Mathematica”. The corresponding phase orbit ϕ(1)

versus ϕ(1)
ξ is drawn in Figure 1b. These plots show that

the ξ space-time evolution and phase orbit of the chaotic
soliton are very complex. Particularly, the numerical so-
lution tends to unboundedness for sufficiently large value
of the variable ξ, although the corresponding analytical
solution (23) is bounded under the condition (17). This
exhibits that sensitivity of the solution to the initial con-
ditions leads to spread apart exponentially between the
numerical solution and the analytically bounded solution.

For any set of the parameters η, α, k and the ini-
tial and boundary constants x0, t0, ϕ

(0)(x0, t0), equa-
tions (20) describe the ρ− k − ω curves in the parameter
space for ρ > 0, k > 0 and ω > 0. We can easily show
that the distribution of the boundedness curves sensitively
depends on the initial and boundary constant ϕ(0)(x0, t0)
as follows [19,20]. Setting F (ϕ(0)) = ln tan[ϕ(0)(x0, t0)/4],
then F (ϕ(0)) takes very great value in the neighborhood
of ϕ(0)(x0, t0) = 2π and any small change of ϕ(0)(x0, t0)
will lead to large change of the F (ϕ(0)). The great F (ϕ(0))
value makes the η, α, k curves the quite dense ones. At
the point ϕ(0)(x0, t0) = 2π, F (ϕ(0)) tends to infinity. This
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Fig. 1. (a) Plots of the ξ space-time evolution from equa-
tion (23) for the parameters k =

√
2, ω = 1, η = ρ =

0.1, kξ0 = π/2 and α = 0.025π[1 + sech(π/2)]. (b) The cor-
responding phase orbit, the first-order corrected solution ϕ(1)

versus solution derivative ϕ
(1)
ξ .

leads to infinitely dense η, α, k curves in a certain region,
since the infinite F (ϕ(0)) is included in the sinusoidal func-
tion of equations (20) as a factor of

√
k2 − ω2. In the case

the area ratio between the curves and the white intervals
is equal to one. It is clear that the parameters values on
the curves are corresponded to the bounded solitons and
ones on the white intervals the unbounded solutions. The
infinitely dense curves imply that the probability of the
boundedness is 1/2 and it sensitively depends on the ini-
tial conditions and system parameters. The result agrees
with the previous analysis to the spatially independent
chaos [19,20]. In fact, equations (12) are similar to the
heteroclinic solutions and equations (20) the Melnikov’s
chaos criterion [23,19] for the spatially independent func-
tion ϕ. Particularly, equations (20) give the chaos region

ρ ≥
∣∣∣ 2η√
k2 − ω2

± 8αω
π(k2 − ω2)

∣∣∣ (24)

in parameter space. From equation (24) with positive sign
we make the plot of chaotic region in parameter space
as Figure 2: (a) The frequency ω vs. amplitude ρ for
η = 0.1, α = 0.25, k = 1; (b) The ρ − ω plot for
η = 0.1, α = 0.25, k = 2. Figure 2 shows that the chaotic
region is similar to that of the heteroclinic chaos [23]. For
any set of the initial and boundary conditions, we can ad-
just the control parameters ρ, ω and k in chaotic region
to fit the boundedness condition (20), and produce the
bounded and chaotic solitons with velocity given by equa-

0 0.2 0.4 0.6 0.8 1

Frequency

0.25

0.5

0.75

1

1.25

1.5

1.75

2

A
m
p
l
i
t
u
d
e

a

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Frequency

0.25

0.5

0.75

1

1.25

1.5

1.75

2

A
m
p
l
i
t
u
d
e

b

Fig. 2. Chaotic region in parameter space from equation (24).
(a) The frequency ω versus amplitude ρ for η = 0.1, α =
0.25, k = 1; (b) The ρ− ω plot for η = 0.1, α = 0.25, k = 2.

tion (19). The soliton velocity is an important quantity
in physics. For example, the emitted power from the long
Josephson junction is proportional to [12]D2(1−D2)−3/2.
From equations (19) and (20) we can set α ≈ 0 and ω ≈ k
such that the velocity D approaches 1 and the emitted
power reaches very great. The further investigation on ap-
plications of the chaotic solitons will be important and
interesting.

We have extended a method for solving the perturbed
Sine-Gordon equations by using idea from the constant-
variation of differential equations. The method can be di-
rectly applied to ϕ4 field and other nonlinear scalar field.
Employing this to the periodically driven long Josephson
junction, we have demonstrated existence of the chaotic
kink and antikink solitons and shown their several impor-
tant properties. Perturbed solutions of the chaotic solitons
are expressed by equation (8) and the integrations (11)
and (14) with a few insolvable terms. The necessary and
sufficient boundedness conditions of the chaotic solitons
are given as the relationships (19) and (20) among the
system parameters and initial and boundary constants,
which lead to the chaotic region (24) being similar to
that of the heteroclinic chaos. It has been numerically
shown that one can produce the chaotic solitons by ad-
justing the control parameters to fit equations (20) and
obtain required soliton velocity through equation (19). We
think that the chaotic solitons collecting the regularity and
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randomness would be doubly useful in some physical ap-
plications.
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